Missing Data in Kernel PCA
نویسندگان
چکیده
Kernel Principal Component Analysis (KPCA) is a widely used technique for visualisation and feature extraction. Despite its success and flexibility, the lack of a probabilistic interpretation means that some problems, such as handling missing or corrupted data, are very hard to deal with. In this paper we exploit the probabilistic interpretation of linear PCA together with recent results on latent variable models in Gaussian Processes in order to introduce an objective function for KPCA. This in turn allows a principled approach to the missing data problem. Furthermore, this new approach can be extended to reconstruct corrupted test data using fixed kernel feature extractors. The experimental results show strong improvements over widely used heuristics.
منابع مشابه
Robust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...
متن کاملRobust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...
متن کاملA Hybrid AANN-KPCA Approach to Sensor Data Validation
In this paper two common methods for nonlinear principal component analysis are compared. These two methods are Auto-associative Neural Network (AANN) and Kernel PCA (KPCA). The performance of these methods in sensor data validation are discussed, finally a methodology which takes advantage of both of these methods is presented. The result is a unique approach to nonlinear component mapping of ...
متن کاملMissing Value Estimation of Epistatic Miniarray Profiling Data by Kernel Pca Regression Ensemble Approach
Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great success on dealing with missing values in data sets with heterogeneous attributes (their independent attributes are of different types) referred to as imputing mixed-attribute data sets. Epistatic miniarray profiling (E-MAP) is a powerful tool for analyzing gene functions a...
متن کاملPOCS-Based Texture Reconstruction Method Using Clustering Scheme by Kernel PCA
A new framework for reconstruction of missing textures in digital images is introduced in this paper. The framework is based on a projection onto convex sets (POCS) algorithm including a novel constraint. In the proposed method, a nonlinear eigenspace of each cluster obtained by classification of known textures within the target image is applied to the constraint. The main advantage of this app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006