Missing Data in Kernel PCA

نویسندگان

  • Guido Sanguinetti
  • Neil D. Lawrence
چکیده

Kernel Principal Component Analysis (KPCA) is a widely used technique for visualisation and feature extraction. Despite its success and flexibility, the lack of a probabilistic interpretation means that some problems, such as handling missing or corrupted data, are very hard to deal with. In this paper we exploit the probabilistic interpretation of linear PCA together with recent results on latent variable models in Gaussian Processes in order to introduce an objective function for KPCA. This in turn allows a principled approach to the missing data problem. Furthermore, this new approach can be extended to reconstruct corrupted test data using fixed kernel feature extractors. The experimental results show strong improvements over widely used heuristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...

متن کامل

Robust Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...

متن کامل

A Hybrid AANN-KPCA Approach to Sensor Data Validation

In this paper two common methods for nonlinear principal component analysis are compared. These two methods are Auto-associative Neural Network (AANN) and Kernel PCA (KPCA). The performance of these methods in sensor data validation are discussed, finally a methodology which takes advantage of both of these methods is presented. The result is a unique approach to nonlinear component mapping of ...

متن کامل

Missing Value Estimation of Epistatic Miniarray Profiling Data by Kernel Pca Regression Ensemble Approach

Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great success on dealing with missing values in data sets with heterogeneous attributes (their independent attributes are of different types) referred to as imputing mixed-attribute data sets. Epistatic miniarray profiling (E-MAP) is a powerful tool for analyzing gene functions a...

متن کامل

POCS-Based Texture Reconstruction Method Using Clustering Scheme by Kernel PCA

A new framework for reconstruction of missing textures in digital images is introduced in this paper. The framework is based on a projection onto convex sets (POCS) algorithm including a novel constraint. In the proposed method, a nonlinear eigenspace of each cluster obtained by classification of known textures within the target image is applied to the constraint. The main advantage of this app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006